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ELASTIC BENDING OF PRETWISTED BARS*
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Abstract—A method of solution is given for the elastic bending of bars with a moderate rate of initial twist.
Results are obtained for an elliptical cross section showing the effect of pretwist on the bending stiffness of the
corresponding untwisted bar. When the cross section is reasonably thin the effect of pretwist can be significant.

INTRODUCTION

WHEN a bar of twisted form in the unstressed state (pretwisted) is bent by end couples, it is
immediately apparent that the response will be influenced by the varying orientation of the
cross section, especially when the flexural rigidities (EI) about the two principal axes of the
section are markedly different. The obvious first approximation is to apply locally the
elementary beam formulas, relating components of moment and curvature in principal
planes. This, however, disregards the helicoidal shape of the boundary, treating it locally
as cylindrical or prismatic. In this paper we take account of the helicoidal shape, assuming
the solution is representable as a power series in a pretwist parameter ». A general method
of solution is presented and the first few terms of the series worked out for an elliptical cross
section.

The solution shows that a moderate rate of pretwist reduces the bending stress o, of
elementary beam theory while introducing components of stress o, 6}, Ty, Tx;, T,, Small
compared to o,. The local centerline curvature is correspondingly increased. For reason-
ably thin sections, such as those used for turbine blades, the increase in curvature for bending
in the stiff (x’, z) plane of the cross section can be significant—20 %, or more-—while the
increase for bending in the flexible (', z) plane is negligible. The dominant terms of the
series, showing the modifications to the stresses and curvatures of straight beam theory
introduced by pretwist, are given by equations (21) and (22).

Investigations of the bending vibrations of pretwisted bars are described in references
[1-13]. In analyses [1-10] it is assumed that the relation between components of moment
and curvature in a principal plane of the cross section is the same locally as that for an
untwisted bar. In [11-13] it is assumed only that the moment—curvature relation is linear,
leaving the constant of proportionality unspecified. Experimental results are presented in

* Most of the work was performed at Stanford University, supported by the Office of Naval Research under
contract Nonr 225(29).
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[5-8] and [13]. In general, the analytical and experimental results indicate that a small
amount of pretwist has little effect on the lowest natural frequency, but changes the higher
natural frequencies appreciably when the cross section of the bar is sufficiently thin.

Zickel [14] and Maunder [15] have obtained solutions for the bending of pretwisted
beams of doubly symmetric cruciform cross section, which indicate that the bending stiff-
ness about a principal axis of the cross section is reduced by a factor involving pretwist.
Using an energy method, Zickel’s analysis takes into account the effect of interactions
between pretwist and distortion of the cross section. Maunder obtains larger corrections
which agree with his experimental results.

The static bending of a bar with one principal moment of inertia quite small compared
to the other has been considered by Maunder and Reissner [16]. Using thin shallow shell
theory they obtained an approximate solution for the pure bending of a pretwisted rectan-
gular plate which is comparable to the first term of the solution obtained here.

THE BOUNDARY VALUE PROBLEM-—ARBITRARY CROSS SECTION

Fixed coordinates x, y, z are placed so that z coincides with the centerline of the pre-
twisted bar and x and y coincide with the principal axes of the cross section at z = 0 (Fig. 1).
All cross sections have the same shape. The cross section at z is rotated relative to the cross

F1G. 1. Segment of a pretwisted bar.

section at the origin by an angle kz, where k is the uniform rate of pretwist. The bar is bent
by a couple with components M, and M, about ox and oy respectively.

The well known solution for the components of stress o, and curvature K,, K, of an
untwisted bar is given by

M
o= My My M,k
I I, ¥

M,

- M= 1
» T EI, 1)

P

After some exploration it appeared more advantageous to seek a stress rather than displace-
ment solution since there is a sense in which the stress distribution is the same for each cross
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section, making possible a reduction of the three dimensional problem to a plane problem.
It is convenient then to specify stress components, not according to curved coordinate
surfaces related to the boundary shape, but in a local orthogonal cartesian system at each
cross section. This system, x', ¥, z, is such that x” and y’ coincide locally with the principal
axes of the section (Fig. 1). They are related to the x, y, z system by

x +iy' = e*(x +iy). (2)

The corresponding stress components (on an elementary parallelipiped with edges
parallel to the local X', ', z directions) are written o, 0}, 0, Ty, Txz» Ty:. They are related
to the x, y, z components by the well known formulas of transformation from one ortho-
gonal cartesian system to another, the scheme of direction cosines being

x y z
X' cos kz —-sin kz 0
y sin kz cos kz 0
z' 0 0 1

In terms of these stress components the differential equations of equilibrium become

chx +aarj’y +0;§z +kD,1,, +kt,, = 0
(Z[x +?yy + (Z +kD,3, = 0
where
Pz = —yl(?x’ +x’5%_

To express the Beltrami-Michell compatibility conditions we introduce the operators

ot 9*  o? G,
Vie o4+ = k¥D3— —
aw tayita L = k*(D; 1)+2kazD2
D, = 2k{kD +2
1 = 2 az

and write

U — ! ’ ’
0 = o, +o, +o,
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The six equations are then

20
(1 +W)[(V'2 +L— ko) +2k%0), +2D, 7, +a 9 -0
1 12 2 2 6291
(1 +v)(V* +L—k*o, +2k*c,— 2D 1},] +a - =0
62
(1 +W(V'2+L +k%e. + (L +i? +:T) =0
g 0 G @
1 +v)[(V'2 +L),, — D, 7, ] +k|[ D)o~ — |0 +-— =
( V){( )Tyz Itxz] ( Zayl 6x') ayraz O
o @ o0
1+ 2 +Ly, +Dyt ) kD, - 10— =
( V)[(V )Ixz 113121 ( Zaxl ayl)e +ax:az O

2
(L +v)[(V'2 + L~ 3k, +Dy(0;, ~ 03] + é’a =0
where v is Poisson’s ratio.

When the stress components are independent of z, equations (3) and (4) reduce to those
derived by Okubo [17] for the torsion and tension of helicoidal rods.

For a boundary surface described by F{x, y, z) = 0, the direction cosines [, m, n of the
normal to the surface are proportional to F/dx, 6F/dy, 0F @z respectively. For the pre-
twisted bar, the lateral surface is described by F'(x", y') = 0 and the boundary conditions
transform into three of the type

o+l m i =0 (5)

where the direction cosines I', m', n’ are proportional to 0F'/éx’, 8F' /8y, kD, F" respectively.

REDUCTION TO A PLANE BOUNDARY VALUE PROBLEM

The components M, , M, of the bending couple are regarded as prescribed. The local
components M, M defined relative to the principal axes at a cross section are the simple
periodic functions of kz expressed by

M, +iM;, = e**(M, +iM,). (6)

Since the loading is periodic, the stress components must also be periodic in kz, and in
particular, it is reasonable to expect a solution for the locally defined stress components
in cos kz, sin kz rather than the complete Fourier series in cos nkz, sin nkz.

To facilitate later treatment of thin cross sections, we introduce the dimensionless
coordinates &, # and parameters x, ¢, defined by

E=x'fa, n=y/b; x=ka &=bla Q)

where a and b are two representative dimensions of the cross section, b being the smaller
{the minor semi-diameter for the ellipse). The locally defined stress components are taken
to be of the form

(G, Ty Gy Thys Thes Th) = E - Re[(P, Q, R, S, T, U)e™ ] ®)
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where
P = p* +ip, Q = g* +ig, etc.

and p*, p, etc., are real functions of &, 1, %, and &.
With subscripts &, # indicating partial derivatives, the equations of equilibrium (3)
become

eP, +S, +#(Dy—ig)U +exT = 0
68 +Q, +u(Dy—ie)T—exU =0 )]
eU,+T,+u(Ds—ie)R =0
where

K

The six compatibility equations (4) become
(1 +v)[e?Py; +P,, +32D3P +2ex*D (28 — iP) +26%%*(Q — P —2iS)] +&’®y; = 0
(1 +v)[€%Qp; +Q,, +#2D3Q — 263*D (28 +iQ) +2&*%*(P— Q +2iS)] +@,, = 0

(1 +V)[82R§§ +R’M +X2(D3 _ZI.SD,.‘)R:I +x2{D3 “‘218D4)® = 0
(10)
(1 +V)[2 Ty + T, +3°D3 T~ 2ex?Dy(U +iT)— e?5x*(T - 2iU)] +x(D4 — ie)®, — e*x®; = 0

(1 +v)[e2Ug +U,, +%°D3U +26x’Dy(T—iU)— 53 (U +2iT)] +ex(Dy — ie)®, +exd, = 0
(1 +v)[*Ss: +S,, +%#2D3S +26*%*(iP —iQ — 28) +2ex°D (@ — P —i8)] +e®y, = 0

D4= é

where
D; = Di—¢?
and
® = ¢* +ip = P+Q +R
The three boundary conditions (5), with (8), become
(p*. p, s*, s, u*, Wl +(s*, 5, g%, g, t*, M’ +(W*, u, t*, t,r¥, r)p’ = 0 (11)

three arising from the terms in cos kz and three from terms in sin kz.

On any cross section z the stress component o is to form a couple with bending com-
ponents as expressed by (6). The components of shear 7,,, 7,, are to give no torsional
couple or force resultants. From these conditions we obtain the relations

g? Jf Ry dédn = (M,—iM,)/Ea® ffRdédn =0
¢ f REAEdn = —(M, +iM,)/Ed® f f Tdédn =0 (12)

”(éT—an)dﬁdn=0 fodrjdn=0
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The problem has now been reduced to the determination of the twelve real functions
p*, p,...,u* uin (8) as functions of position in the region of the £, n plane representing the
cross section. Although the number of unknowns has been doubled, the number of inde-
pendent variables has been reduced from three to two.

SERIES SOLUTION FOR MODERATE PRETWIST—ELLIPTICAL
CROSS SECTION

The form of equations (9) and (10) does not encourage the expectation that a complete
solution can be obtained even for the simpler cross sectional shapes. However, for a mod-
erate rate of pretwist we may consider a solution in the form of power series in » and thereby
reduce the formidable boundary value problem of (9), (10), (11) and (12) to a sequence of
more manageable boundary value problems. The functions P = p* +ip, Q = ¢* +ig, etc.
in (8) are thus taken to be power series of the form

It

P
: (13)
U

I

where summation is understood over the repeated index j for all positive integer values
including zero. The sign of x is not restricted : negative values (left-handed pretwist) are
permitted. But if we have a solution for a positive x, we can at once convert it into the
solution for a negative x by reflecting the bar in a mirror parallel to its axis. Inspection of
the reflection shows that

pr.p;,qf,4q;,rf,r;,st,s; =0 for jodd (14)

t*t.

*,uf,u; =0 forjeven.

For a particular boundary shape, the solution is obtained by substituting the series
(13) into (9), (10), (11) and (12), and setting the coefficients of »’ equal to zero for each j.
The resulting sets of equations—boundary value problems—each corresponding to a
power of x can be solved successively for any number of terms desired in the series (13).

The method of solution is demonstrated here for an elliptical cross section. Taking 2a
and 2b as the major and minor diameters, the boundary in the ¢, n plane is the circle
£2 +y#% = 1. The direction cosines I, m', n’ are then proportional to &&, 7, »(1 —&*)¢n, and
the boundary conditions (11) become

(p*, p, s*, 5, u*, el +(s%, 5, ¢*, g, t*, t +(*, u, t*, t, 1%, ri(1 —e*)n = 0 (15)

Details of the solution are given in the Appendix. For the elliptical section, the x
coefficients are found to be simple polynomials in ¢ and 5 that increase in degree with
increasing powers of x. The resulting stress components are expressed in a manner which
shows at a glance the correction terms that must be applied to the straight bar (x = 0)
solutiont (1) to account for the effects of pretwist (x # 0). The resuits for terms in the series

+ In consequence, negative powers of £ and n appear in some of the correction terms of (16), but are cancelled
out by x’ and y' in the factors representing the straight bar solution.
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through »? are
_M ;y’

M.'

!
X

{[3CH1—EH +CEe2n I +0(c®) + ..}

{ [Ca1=EH H3C P +O0(x*) +.. .}

.V

gy = M/ 1308567 +CReH (1 - +00ch) + ..

M x'
I

{—[C&? +3Cs(1 —n?)]x* +0(c*) + .. .}
, My
o, = -

{1 —-4C31 —6£%) +C*eX(1 - 20 +0(c*) + .. .}

X

’ T 2
J"ivx {1 +i[C,(1-28) +Ce%(1 —6#)]2} +00ch) + .. }

y

7 M.y {[C (1—E3H+3C% z}ggxz +O(%4)+...}

xy

(16)
_M’yx’

2
{- [3C,&2 +Cge(1 "712)]% “? +O() + .. }
. My [ (-=¢) (1-=¢-37)
B T T 20 )3 +ed)

e +003) + .. }

x

Mx'{ (1=¢e)| v x®
- {“(1 +382)[(1 +V)+382] ;1;+0(x3)+..}

y

. My (1-£%) y 3
T, = a {—(3 ) [3 +(1 +v)82] En +00eH) + .. }

Mx' (1—¢%) (1=3&2—-p?)
L2010 v #3880

y

% +003) + .. }

where I, = nab*/4, I, = na’b/4,

(1—&?)a; +be® +ce* +de® +ee®)

PTG e 131 +262 1567 L2....8

o (1=8)e;+dig® +ee® +hie® +age®)
P31 (3 )1 +362)(5 +26% +&Y)

i=1235and7

_ (1—)d; +eg® +he? +ag®)
31 )3 FeA)( +3eH)(5 +262 +¢Y)’

i=4,6and8
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and
a, = 3v(1 +v) b, = 28 +23v +28y? ¢; = 68 +131v +66v2
a, = 32-v?) b, = 4—Tv—28v? ¢; = 8—93y—66v2
ay = —3v by = —2(2+11v) c3; = — (73 +28v)
as = 3(1 +2v) by = 2(10 +19v) ¢y = 111 +66v
as = 3(1—-v) bs = —(9 +10v) cs = —10
ag = —18(1—v) bg = 3(15 +22v) Ce = 2(22 +19v)
a, = —3v b, = —(11 +10v) c, = —14
ag = 3(1-2v) bg = —2(1 +19v) cg = —3(23 +22v)

d, = 164 +153y +28v2 e; = 3(20 +14v +v?)
dy, = —(524+97v+28v%) ¢, = —3(10 +9v +v?)

d; = 2(7+19v) ey = 15(1 +v)
d, = 6(7 +3v) e, =0

ds = 3+10v es = —3(1-v)
de = 3(3 +2v) e =0

d, =29 +10v e; = 34 +v)
dg = —6(2+3v) eg = 0.

For the case ¥ = 0, the straight bar, and for ¢ = 1, the bar with circular cross section, all
the correction terms vanish, as would be expected.

CENTERLINE CURVATURE

Components of centerline curvature may now be determined using the stress solution
(16). For small displacements u and v, the components of centerline curvature in the x, z
and y, z planes are approximated by

o 20+v)or, 1 0
= —0 = —_— — +
K, dz° E 6z E ox [0:= (0, Fa,)]

(17
0% 20+v) o1, |1 0
Y 0z2 E 0z Edy [0:—v(ox +a))]

Local components K and K, defined relative to the principal axes at a cross section, are
related to K, and K, by

K, +iK}, = e”*(K, +iK)). (18)

Using (2) and the appropriate stress transformation, the local components of curvature are
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expressed in terms of local components of stress by

2(1 +v){ o7, 1 , .
[ ’ T _ +
K, £ ( 3 +kt, Eor [0, — V(o) +0})]
(19)
2(1 +v)[ o1}, 10 _, L
e — k| - — v, +a))].
y E ( az kaZ E ay/ [Gz V(O'x ay):]

For the elliptical cross section the components of centerline curvature obtained by sub-
stitution of (16) into (19) are

M; C, »* C, 4(1—¢*) 2 4
= et A (o +39Cs—— T 12 +0(x*) + . ..
K. Ely{l + > 22 + 5 +vC, +3vCs G e +36) X (3¢*)

(20)
, M, C3% Ct 41 —e*)e?
K= ﬁ{ —[72 +3vC¥ +(71 +vcz)82—————(3 T +359) W +Om*y + ..

SUMMARY OF RESULTS

It will be observed that the constants C; and C¥ defined below equations (16) may be
represented as power series in ¢ starting with ¢ to the zero power. Since it is known from
experiments that the effect of pretwist is most pronounced for thin sections, we may simplify
the solutions (16) and (20) without great loss of generality by limiting ¢ to small values.
Expanding C; and C} in power series in ¢, and neglecting terms of order &? compared to 1,
the predominant terms in the » series (x> small compared to 1) for stress components are

found to be
My Mx[. v x?
L= 1+-(1-2E%)=
G I 1 [ 6( ¢ )82

s @1
, Myx' (138 —n%)
T z = -
Y I, 2(1 +v)¢
and for curvature components
M, v %? M,

Ki==-21+-=1|; K, === 22

* Ely[ 6 82] Y El, (22)

Summarizing the results, we find that for moderate rates of pretwist and reasonably
thin sections, the classical solution for a straight bar must be modified for bending in the
stiff (x', z) plane of the cross section but is relatively unaffected for bending in the flexible
plane. For an elliptical cross section with ¢ = 0-1, % = 02, v = (-3, the largest stress
(o, at { = +1)is reduced by 209, while the curvature K/, is increased by 20%. Thus for
dimensions in the range of interest for turbine blades, for instance, the effect of pretwist
is significant. This tends to bear out findings of previous analyses and experiments that
the lowest natural frequency, corresponding roughly to bending in the flexible plane, is
essentially unchanged by a moderate pretwist. But for the higher natural frequencies it
would appear that the straight bar relations assumed in references [1-10] could lead to
significant errors.

The stress components (21) and curvature components (22) may be compared with
results obtained by Maunder and Reissner [16] for the bending of a shallow hyperbolic
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paraboloidal shell-—essentially a pretwisted plate. They found the sheet stress and centerline
curvature at the origin (z = (), due to bending in the stiff (x, z) plane, to be

1 Mx v %?
- = P (3L
2p N I, [ 150 7¢ );;2]

M [ va?
K, =21+ =
* Eli 5 82:|
while the curvature and stresses due to bending in the flexible {y, z) plane are unaffected
by pretwist. Thus the leading terms of the series (16) and (20) obtained here are in substantial

agreement with the Maunder and Reissner results, the small differences being due no doubt
to the difference in cross sectional shapes treated.
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APPENDIX—SOLUTION FOR COEFFICIENTS OF THE » SERIES

Zeroth boundary value problem (x°)

The differential equations and boundary conditions for the elliptical cross section are
given by (9), (10), (12) and (15). Substituting the series (13) into these equations, and setting
the coefficients for each power of x equal to zero, we obtain sets of equations relating
P, Q;,...U;
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The set of equations obtained from the coefficients of x° is

From (9): Py ¢ +80, =0
S, +Qo,p = 0.
From (10): (1 +v)[*Po ge +Po py) 18P e = 0

(1 +v)[82Q0,§é +Q0,rm] +(I)0,rm = 0

¢’Ro s tRo =0
(1 +v)[€*Sq ¢ +S0,m] Te@0 2y = 0.
From (15): eEPy+nSe=10
&Sy +nQo = 0.
Equations (A2) can be combined with (A1) and rewritten in the form

SzRo’éé +R0:’I'l = O

1
2 —
&"Poce ¥ Popm—_ Rogy = 0

1
SZQO,és‘ +Qo.m +;R0.rm =0

€
82S0,5¢ +SO,rm +;R0,§€ =0

1241

(A1)

(A2)

(A4)

Now, assuming a polynomial solution in ¢ and n, we express Py, Qq, R, and S, as

sums of polynomials

Py = P, (v, e’

So = So,-j(v, 6)’1161 l,] = O, 1, 2, PPN

(AS)

To simplify the solution, we consider only the component of bending moment M, (M, = 0).

Then, from symmetry of the cross section about ¢ and #, it can be seen that

p*, q* r*,s =0 forieven,jodd

p.g,r,s* =0 foriodd, jeven

(A6)
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Substituting (AS) into (A4) and (A1), the polynomial forms of p,, q,,7,, 5, that satisfy
(A1) and (A2) are found to be

ro = Re[ ¥ rojC’]

jodd

I

Po = — RC{ Y So_;{j} —gf'gsﬁzé’?z “‘Igresé(glézrfz —etnt)+ ..

J odd A7)

; 1 1
9o = Re[ > SojCJ] —(So1~q01)¢ +;7'0353 +;rosf(é4- Setp*y+ ...

Jjodd

71 )
So = Im[ 2 Sojcj] +;ro:#?z"?3 +;"058'1(552€2’72-84'14) +...

J odd

where { = £ +ign. Similar sets of polynomials are obtained for p?, ¢, ¥, s¥. It should be
noted at this point that the solution has not yet been restricted to the elliptical cross section,
only to a doubly symmetric section, and that is not essential to the method. We might
reasonably expect, therefore, that the solution for other cross sectional shapes described
by simple polynomials in ¢ and # would be no more difficult,

The coeflicients of the polynomials (A7) are obtained from the boundary conditions.
Putting (A7) into (A3) and replacing ? by 1 —¢2, the set of equations obtained from the
coefficients of each power of &, written in matrix form, is

Ar=0 (AB)
where
[ayy a2 a3 a0 [So1]
Az 4z (33 Qa .. do1
Q33 Q34 .. So3
A= Qg3 Ggqa ..-| .0 =|To3
0 Sos
Tos
i | L

and the a;; are functions of v and ¢ only. It can be seen from the derivation of (A8) that the
2 x 2 blocks of elements on the diagonal of 4 are nonsingular. Therefore 4 is nonsingular
and the solution of (A8) is

r=0 (A9)

The only remaining nonzero coefficient is ry,, which is found from the conditions (12}
(M, = 0)to be

4M,

" gEa’s (A10)

Toy =
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The solution to the imaginary parts of (A1), (A2) and (A3) thus becomes

DPo>90s80 = 0
= X (Al1)
EI,
Similarly, the solution to the real parts of (A1), (A2) and (A3) is found to be
p::: q:’ S:‘ =
M.y
= X Al2

X

With a solution for M (M, = 0), the solution for M (M, = 0) can be obtained by replacing
kz in (8) by kz +1ix.

Of course the results in (A11) and (A12) could have been deduced immediately from
the straight bar solution (¥ = 0) and verified by substitution into (A1), (A2) and (A3). The
purpose of solving the equations here is to demonstrate the method and show the solution
is unique.

First boundary value problem (x')
The set of equations obtained by setting the coefficients of %! equal to zero is

From (9):

eU e +T,, = —(1—¢e*)(&—ien)B. (A13)
From (10):
(1 +v)[e* T} g + T} 4] = ie(1 —&*)B
1,8 1,mm, (A14)
(1 +v)[e2U, e +Uy 4] = —&(1—€%)B.
From (15):
U, 1Ty = —(1-¢&*)(n—ied)énB (A15)
where
_ 4AM,
" nEa’?
Again assuming a polynomial form of solution, T, and U, are expressed as
T, = Ty, em'e
. (A16)
U,= qu(V, el L,j=0,1,2,...
and it is noted from symmetry of the cross section that
t,u* =0 foriodd,jodd
(A17)

t*,u =0 forieven, jeven.
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By substitution of (A16) into (A13) and (A14) the polynomial forms of ¢, and u, are
found to be

el—e?) y
ty = o +V)Bn +Re| 3 1,

Jjeven

(1—¢2 .
= v(l +j)—)B€n +Im|:; evEe:n tojcj]

(A18)

where { = £ +ign.
Substituting (A18) into the boundary condition (A15), and replacing > by 1 — &2, the
set of equations obtained from the coefficients of each power of &, written in matrix form, is

At = b (A19)
where
‘a“ dyy Qg3 ... ] [ to0 | —b,-
A3y Q3 ... tos b,
A= asy ... |, t=|tos}, b=
0 0

and the a;; and b; are known (b; = 0 for i > 2). Since the diagonal elements of A are non-
singular, the solution to (A19) is

t=A"'b (A20)

where the form of 4™ ! is
by, byy bys
byy b
A"l = b3

Thus the solution (A20) of (A19) is
too = byiby +bysb;
toz = by3b; (A21)
toas toes Logs--- = 0.

Since A is upper triangular, the b;; are readily determined from the first few a;;. Thus

1 i 1
T 227 g, (1+436Y
2
by, = a2 €
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and
g(1—¢?) _ 3e(1-¢%)
204+y) 0 7 2(1+v)
The resulting solution of the imaginary parts of (A13), (A14), and (A15)is

&(1—e)B
T 2(1 +Hv)(1 +363)

v (1—£2)B
[(1 ) +382] 135"

Similarly, the solution of the real parts of (A13), (A14), and (A15) can be found to be

. v (1—¢?)

T = — |:3 +(1 +v)82](3 +82)B€7]
. t1-¢)B
Z 203 +69)

It is easily verified that (A22) and (A23) also satisfy the conditions (12) on each cross
section.

Solution of the boundary value problems associated with the higher powers of »
continues in a similar fashion, the difficulty encountered being no greater than for the
first two boundary value problems shown here. The sets of equations are similar, differing
only in the nonhomogeneous terms.

bl = B.

Iy

i

(1-3&—n);
(A22)

{

Uy

(A23)
(1—¢&*—3n%).
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A6crpaxt—/JaeTcs penreHue Ui Ynpyroro uiruba 6anok co cpeaHel CKOpOCTBHIO HAYaIPHOTO KPyueHuUs .
TTony4aroTca pe3ynbTarsl s JLIMITHYECKOTO MOMEPEYHOro paspasa, nokassiBaromme dpdexT mpemsa-
PHTEIIBHOTO KPY4YeHHA HA XKECTKOCTh M3ruba COOTBeTCBEHHOM HECKPydYeHHOH Oanku, EcnM morepevHBIH

pa3pe3 sABNAETCA YMEPEHHO TOHKHM, 3(deXT IepeABapUTENLHOrO KPYYeHHs MOXKET OKa3aThCa 3HAMHTE-
BHBIM,



